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Abstract Aldose reductase 2 (ALR2), which catalyzes the
reduction of glucose to sorbitol using NADP as a cofactor,
has been implicated in the etiology of secondary compli-
cations of diabetes. A pharmacophore model, Hypo1, was
built based on 26 compounds with known ALR2-inhibiting
activity values. Hypo1 contains important chemical features
required for an ALR2 inhibitor, and demonstrates good
predictive ability by having a high correlation coefficient
(0.95) as well as the highest cost difference (128.44) and
the lowest RMS deviation (1.02) among the ten pharmaco-
phore models examined. Hypo1 was further validated by
Fisher’s randomization method (95%), test set (r=0.91),
and the decoy set shows the goodness of fit (0.70).
Furthermore, during virtual screening, Hypo1 was used as
a 3D query to screen the NCI database, and the hit leads
were sorted by applying Lipinski’s rule of five and ADME
properties. The best-fitting leads were subjected to docking
to identify a suitable orientation at the ALR2 active site.
The molecule that showed the strongest interactions with
the critical amino acids was used in molecular dynamics
simulations to calculate its binding affinity to the candidate
molecules. Thus, Hypo1 describes the key structure–
activity relationship along with the estimated activities of
ALR2 inhibitors. The hit molecules were searched against
PubChem to find similar molecules with new scaffolds.

Finally, four molecules were found to satisfy all of the
chemical features and the geometric constraints of Hypo1,
as well as to show good dock scores, PLPs and PMFs.
Thus, we believe that Hypo1 facilitates the selection of
novel scaffolds for ALR2, allowing new classes of ALR2
inhibitors to be designed.
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ALR2 Aldose reductase 2
BBB Blood–brain barrier
DS Discovery Studio v.2.5
EF Enrichment factor
GF Goodness of fit
HBA Hydrogen bond acceptor
HAli Hydrophobic aliphatic
HAro Hydrophobic aromatic
MD Molecular dynamics
NI Negative ionization
NADPH Nicotinamide dinucleotide
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propanoic acid
PME Particle mesh Ewald
PLP Piecewise linear potential
PMF Potential of mean force
RA Ring aromatic
RMS Root mean square
RMSD Root mean square deviation
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RMSF Root mean square fluctuation
TIM Triose phosphate isomerase
VMD Visual molecular dynamics

Introduction

Diabetes is a chronic disease that occurs when the pancreas
is not able to produce enough insulin or when the body
cannot effectively utilize the insulin present [1]. There are
two types of diabetes: type 1 diabetes (known as insulin-
dependent or childhood-onset diabetes) is characterized by
a lack of insulin secretion, and type 2 diabetes (known as
non-insulin-dependent or adult-onset diabetes) is caused by
the body’s ineffective use of insulin. Diabetes often results
from excess body weight and physical inactivity.

The polyol pathway has been implicated in the etiology of
secondary complications of diabetes. Aldose reductase 2
(alditol/NADP + oxidoreductase, EC 1.1.1.21, ALR2) is the
first enzyme in the polyol pathway; it reduces excess D-
glucose to D-sorbitol, with the concomitant conversion of
NADPH to NADP+ [2–5]. Inhibiting ALR2 blocks the
glucose flux and prevents or reverses functional deficits and
structural abnormalities in the lens, retina, kidney, and
peripheral nerves [6]. ALR2 is a 36 kD triosephosphate
isomerase (TIM)-barrel-shaped monomeric protein of 315
amino acids, and mapped to chromosome region 7q35.
Human aldose reductase, a cytosolic protein belonging to the
aldo-keto reductase superfamily reductase [7], is a nicotin-
amide dinucleotide (NADPH)-dependent oxidoreductase that
catalyzes the reduction of a broad range of aldehydes
including glucose [8]. It also catalyzes the reduction of
aldehydyes, xenobiotic aldehydes, ketones, and trioses using
NADPH as a reducing cofactor [9]. ALR2 converts glucose
into fructose using sorbitol dehydrogenase, and the accumu-
lation of sorbitol in cells leads to diabetic complications.
Under increased glucose flux, sorbitol can accumulate in cells
with insulin-independent glucose uptake, leading to augment-
ed osmotic pressure in the cells [10]. A variety of diabetic
complications have been attributed to these biochemical
phenomena caused by glucose processing through the polyol
pathway. Thus, ALR2 has received considerable attention as a
target for therapeutic intervention. Inhibiting ALR2 prevents the
entry of glucose into the sorbitol pathway which reduces the
damaging effects of late-onset diabetic disorders [11]. Therefore,
inhibiting ALR2 is a potential therapeutic approach to curing
the debilitating pathologies associated with chronic hypergly-
cemia.

The details of the binding pocket of ALR2 were
identified by analyzing the various crystal structures of
ALR2 [12–14]. The active site of ALR2 is located at the C-
terminal face of the TIM barrel, which is well suited to
participating in efficient interactions with NADP+, a

cofactor required for ALR2’s reduction reactions. The
binding pocket involves Ala299, Leu300, and Phe122 at
the solvent-exposed face, and the side chain of Trp111,
which orientated towards the center of the TIM barrel [15–
18]. Extensive research over the past few decades has
identified the involvement of ALR2 in the pathophysiology
of diabetic complications, as it plays a pivotal role in
glucose metabolism [19]. Inhibiting ALR2 may represent a
direct treatment for diabetic complications, independent of
controlling blood sugar levels, and research in this area has
led to the development of a number of structurally diverse
ALR2 inhibitors. The plethora of well-resolved crystal
structures of ALR2 also mark it out as a promising target
for rational drug design. The aim of ALR2 inhibitor therapy
is to normalize the elevated fluxes of blood and sorbitol
through the polyol pathway in the target tissue. However,
although it undoubtedly shows great therapeutic potential
for the treatment of diabetes, ALR2 is a particularly
challenging molecule to use for drug design due to its
remarkably broad substrate promiscuity.

Pharmacophore modeling is one of the strategies used to
identify new ligands and develop novel inhibitors for
ALR2. In the work reported here, we generated a chemical
feature based pharmacophore hypothesis using the Hypo-
Gen algorithm implemented in Discovery Studio v.2.5 (DS)
[20]. This approach provided structure–activity relationship
data on a set of compounds, and the most potent inhibitors
in various databases were retrieved by implementing the
best hypothesis in a virtual screening process. The screened
molecules were sorted based on Lipinski’s rule of five as
well as their absorption, distribution, metabolism, and
excretion (ADME) properties, and the selected hit mole-
cules were subjected to molecular docking studies. The
docked molecules that showed good orientations at the
active site of ALR2 based on the known interactions
between ligands and the ALR2 binding pocket were
selected for molecular dynamic (MD) simulations. The
best molecule obtained from the MD simulations was used
as a query to perform a similarity search against the
PubChem database.

Methods and materials

Pharmacophore modeling is one of the most frequently
applied and valuable methods of discovering novel scaffolds
for various targets, so this approach was used in this work to
find novel inhibitors of ALR2. Two different types of
pharmacophore procedures can be used to discover the most
potent leads: (i) ligand-based and (ii) structure-based. Here we
used ligand-based pharmacophore generation, which depends
completely on the reported activity value (IC50) of the known
antagonist of ALR2.
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Preparation of the training and test sets

The 51 known inhibitors of ALR2 were identified from
various reports [21–23] and divided into two different sets:
(i) a training set to generate the hypothesis, and (ii) a test
set to validate the generated hypothesis. Among the 51
compounds, 26 were picked as training compounds (these
were selected based on certain rules, such as: the compounds
should span over four orders of magnitude, and they should be
structurally diverse), while the remaining 25 compounds were
selected for the test set. The training set molecules were
divided into three categories based on their activity values:
highly active (IC50<300 nM, +++), moderately active (300
nM ≤ IC50<3000 nM), and low activity (IC50≥3000 nM).
The 2D forms of the training and test set molecules
were sketched using ChemSketch [24] and converted into
their corresponding 3D forms using DS. DS provides two
types of conformational analysis: FAST and BEST quality
analysis. FAST conformational analysis is the method of
choice for generating a database of compounds, because
the tolerances in a database query can be adjusted to
minimize the effect of incomplete conformational cover-
age. Here, the BEST conformation analysis was applied
for conformation generation, and the compounds were
energy minimized to the closest local minimum by
applying the CHARMm force field [25–27] for hypothesis
generation. A maximum number of 255 diverse confor-
mations were modeled for each compound using a Monte
Carlo-like algorithm with an energy range of 20 kcal mol−1

together with a poling [28] algorithm.

Quantitative pharmacophore generation

Before performing the quantitative pharmacophore mod-
eling, active compounds of the training set molecules
were submitted to the Feature Mapping protocol to
identify the chemical features that are crucial to potent
inhibition of ALR2. The resulting chemical features
were used to generate the quantitative hypothesis using
the 3D QSAR Pharmacophore Generation protocol in
DS, which correlates the observed biological activities
for a series of compounds with their chemical struc-
tures. Based on the activity values presented by the
training set compounds, the top ten hypotheses were
identified and evaluated using the Debnath method. This
method implies that the best pharmacophore model
should have a high correlation coefficient, the lowest
total cost, and the lowest root mean square (RMS)
deviation, and the total cost should be close to the fixed
cost and far from the null cost. The reliability of a
pharmacophore model depends on the difference be-
tween the total cost of the generated hypothesis and the
null hypothesis.

Methods used to validate the selected hypothesis

Once the best hypothesis had been selected from among the
top ten hypotheses, it was validated by applying various
potent methods. In this work, three potent methods were
used to validate the selected hypothesis: (i) Fisher’s
randomization, (ii) the application of a test set, and (iii)
the use of a decoy set. Fisher’s randomization was
performed at the same time the hypothesis was generated;
it produces a number of random spreadsheets that depend
on the selected significance level (90%, 95%, 98%, 99%)
by shuffling the activity values present in the training set.
Test and decoy sets were used to check whether the best
hypothesis had the ability to determine the order of activity
of molecules other than the training set compounds, and
also to find out how well it differentiated the ALR2
inhibitors from other compounds, respectively. The test set
contained a wide range of activity values, and the
molecules in it were classified as either highly active,
moderately active, or inactive, based on their activity
values, just as in the training set. The decoy set consisted
of 2,200 molecules, including ten known ALR2 inhibitors.
The Ligand Pharmacophore Mapping protocol was used
to calculate parameters such as the total number of
compounds in the hit list (Ht), the percentage yield of
actives (Y), the proportion of active molecules in the hit
list (A), the enrichment factor (EF), and the goodness of fit
(GF). The following equations were used to calculate the
EF and GF [29]:

EF ¼ H a � Dð Þ= H t � Að Þ½ � ð1Þ

GF ¼ Ha=4H tAð Þ 3Aþ H tð Þ � 1� H t � H að Þ= D� Að Þð Þð �:½
ð2Þ

Here, Ha is the total number of active molecules in the
hit list, D is the total number of molecules in the decoy set,
and A is the total number of actives in the decoy set. The
values of EF and GF indicate the specificity and selectivity
of the best pharmacophore model.

Virtual screening

Virtual screening technology is used to discover or identify
novel potent compounds that can repress or trigger the
activity of a particular target. In this work, the best
hypothesis was selected based on the above validations
and used as a 3D structural query in virtual screening to
retrieve a novel scaffold for ALR2 inhibition from the NCI
database (~200,000 compounds). The screened compounds
were filtered by applying some conditions; for example,
maximum fit values of greater than 10 were selected based
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on the highest fit values of active compounds in the training
set, the ADME properties of the compounds were exam-
ined, and Lipinski’s rule of five was applied [30]. Mainly
blood–brain barrier (BBB), solubility, and absorption
criteria were the focus of the ADME investigation; if the
molecule had values of 3, 3, and 0 for BBB, solubility, and
absorption, respectively, it was considered that the molecule
had good solubility, absorption, and BBB [31]. Lipinski’s
rule of five is a simple model that is used to forecast the
absorption and intestinal permeability of a compound.
According to the rule of five, compounds are well absorbed
when they possess a logP of less than 5, a molecular weight
of less than 500, fewer than five hydrogen-bond donors,
fewer than ten hydrogen-bond acceptors, and fewer than ten
rotatable bonds. Compounds that satisfied all of the above
filters were selected for the subsequent molecular docking
studies, which were performed to obtain the optimal
orientations of the leads at the active site.

Molecular docking protocol

Molecular docking is one of the best filtering methods used
in the drug design process. Hence, docking was carried out
to find the most suitable orientation and interactions
(hydrogen bonds and hydrophobic interactions) of each
lead at the protein’s active site. The LigandFit protocol in
DS [26], which is one of the best docking techniques
available, was used to dock the screened compounds. The
protein complex (receptor) was selected from the Protein
Data Bank [32, 33] (PDB, http://www.rcsb.org) to perform
the molecular docking studies. Many ALR2 complexes
have been reported; among these, PDB ID: 3DN5 [11] was
selected as the receptor based on the resolution of the
complex as well as the deposited date. The receptor was
first prepared by removing the water molecules, and the
CHARMm force field [25–27] was applied using the
Receptor-Ligand Interaction protocol in DS. After prepar-
ing the receptor, the binding site was identified based on the
volume occupied by the ligand in the ALR2 complex. To
validate our docking parameters, the co-crystal from PDB
was initially sketched and docked into the active site of
ALR2. The docked pose was checked to see whether it was
able to produce the hydrogen-bonding interactions with the
critical amino acids. The RMSD between the docked pose
and the co-crystal was calculated to determine if the
docking parameters were able to reproduce a conformation
comparable to that of the co-crystal at the active site of
ALR2. Then the leads were docked using the same
parameters as in the co-crystal docking. During the docking
process, the top ten conformations for each ligand based on
the dock score after energy minimization using the smart
minimizer method (which begins with the steepest descent
method and is followed by the conjugate gradient method)

were assessed. The docked poses were validated based on
the hydrogen-bonding interactions between the candidate
molecules and the active site residues.

Molecular dynamics simulation

Based on the docking results, MD simulation was
performed for the complexes of ALR2 obtained (with the
ligands NCI0036494 and 53N) using the GROMACS 4.0.5
[34, 35] computational package. The Gromos96 force field
[34] was applied to the two systems, placed in the center of
the cubic box, and solvated by the water molecules.
Topology files and other force field parameters for ligands
were generated using the PRODRG program [36, 37]. Eight
water molecules were replaced with Cl− counterions to keep
the system electrically neutral. A steepest-descent algorithm
was used to minimize the energy and thus relax the water
molecules in each system. All covalent bonds containing
the hydrogen atoms were constrained using the SHAKE
algorithm [38] with a tolerance of 10−7 Å. The Berendsen
temperature and pressure coupling methods were applied to
keep the system in a stable environment (300 K, 1 Bar);
both of the coupling constants were set to 0.1. The particle
mesh Ewald (PME) [39] method for long-range electrostatics,
a 9 Å cutoff for Coulomb interactions, and a 10 Å cutoff for
van der Waals interactions were selected. The LINCS [40]
algorithm for bond constraints was used. Five-nanosecond
MD simulations were performed at 300 K with an
integration step of 1 fs, and periodic boundary conditions
were used in all three dimensions. The three-dimensional
structures and trajectories were visually inspected using
PyMol and visual molecular dynamics (VMD), respectively.
The frame that showed the smallest RMSD from the average
structure obtained during the last 2 ns of MD simulation was
selected as a representative structure. The representative
structure was refined by performing 1000 steps of steepest
decent followed by conjugated gradient energy minimiza-
tion, and this refined structure was used for further analysis.

Similarity search

The best molecule from the MD simulation was used as a
reference to find similar molecules in the PubChem database.
The compounds that showed similarities of greater than 90%
to this best molecule were selected for further refinement, such
as the application of the rule of five and hypothesis screening
using best conformation generation. These well-screened
molecules were then subjected to molecular docking studies
to find the optimal orientation and binding affinity of each
molecule at the active site of ALR2. The LigandFit docking
program in DSwas used to dock the screenedmolecules using
the same parameters employed for the hit compounds from the
virtual screening process.
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Results and discussion

HypoGen model for ALR2 inhibitors

The hypothesis was generated based on 26 compounds
present in the training set (Fig. 1). These compounds were
collected from the various literatures having different scaf-
folds. Hydrogen-bond acceptor (HBA), hydrophobic aliphatic
(HAli), hydrophobic aromatic (HAro), negative ionization
(NI), and ring aromatic (RA) groups were selected as required
chemical features for ALR2 inhibitors using the Feature
Mapping protocol, and were used as input to the 3D QSAR
pharmacophore generation module. The top ten hypotheses
generated and their statistical parameters were obtained based
on the activity values of the training set compounds (Table 1).
Among the five stated above, three chemical features (HBA,
HAli, and HAro) were present in all of the hypotheses,
indicating that these chemical groups are necessary for ALR2
inhibition. The ten hypotheses thus generated were catego-
rized into three classes based on their chemical features. Three
hypotheses (Hypo1, Hypo6, and Hypo7) were in the first
class, which exhibited two HBA, two HAro, and one HAli

feature; five hypotheses (Hypo2, Hypo3, Hypo4, Hypo8, and
Hypo9) were in the second class, which presented one HBA,
one HAli, two HAro, and one NI feature; the third class
contained two hypotheses (Hypo5, Hypo10), which had one
HBA, one HAli, one HAro, one RA, and one NI pharmaco-
phoric feature. The hypothesis with the highest fit value was
selected each of the three classes (Hypo1 in class I, Hypo2 in
class II, and Hypo5 in class III) in order to elucidate the
chemical groups that are crucial to ALR2 inhibition. Hypo5
had a maximum fit value of 7.61, but when the RA group was
replaced by a HAro group, its maximum fit value increased to
9.75, as seen for Hypo2. Hypo1 had a maximum fit value
(10.92) that was greater than that of Hypo2, and Hypo1
differed from Hypo2 in that it has another HBA feature rather
than an NI feature. Hypo6 and Hypo7, which had the same
chemical features, yielded maximum fit values of 9.4 and
10.15, respectively, but Hypo1, which also has the same
features as Hypo6 and Hypo7, produced a maximum fit value
of 10.92. The only differences between these three hypotheses
were their geometric constraints. Based on this analysis, we
inferred that the HAro and HBA chemical features are crucial
to the inhibition of ALR2. Hypo1 showed the greatest ALR2-

Fig. 1 2D chemical structures of the 26 training set molecules used for hypothesis generation; their experimental activity values (IC50) are given
in parentheses
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inhibitory activity, and this contained five features: HAli, two
HBA, and two HAro groups. Its 3D geometric constraints are
shown in Fig. 2.

Debnath analysis states that the best pharmacophore
model should have the lowest total cost value, the highest
cost difference, the smallest RMS, and the best correlation
coefficient. The predictive power of Hypo1 was confirmed
using Debnath analysis. A hypothesis is considered to be
valid when the overall cost of the hypothesis is far from the
null cost and close to the fixed cost. The difference in cost
is the difference between the null cost and the total cost of
the hypothesis; a cost difference of 40–60 bits of cost
difference leads to a predictive correlation probability of
75–90%, and if the difference is greater than 60 bits, the
hypothesis is considered to have a correlation probability of
of greater than 90% [31]. The cost difference bfor Hypo1
was found to be 128.44—more than 60 bits, indicating that
this hypothesis has a >90% chance of being able to select
an ALR2 antagonist. We also determined the correlation

coefficients of the hypotheses from linear regressions
derived from the geometric fit index values. All of the
hypotheses had correlation coefficients of >0.90, but Hypo1
presented the highest correlation coefficient (0.96), which
demonstrates the good predictive ability of Hypo1. The
RMS factor (1.02 for Hypo1) represents the deviation of the
estimated activity value from the experimental activity value,
normalized to the uncertainty, and indicates the predictive
quality for training set compounds. The fixed and total cost
values for Hypo1 were 94.82 and 108.57, respectively. The
highest cost difference and good correlation along with low
RMS and minimum error values were observed for Hypo1
(Table 1) when compared with the other hypotheses. Hence,
Hypo1 was selected as the best hypothesis and employed in
further analyses.

To elucidate the predictive accuracy of Hypo1, the training
set was classified into three subsets based on the activity
values of the compounds in the set: highly active, IC50<300
nM=+++; moderately active, 300 nM≥IC50<3000 nM=++;

Table 1 Statistical data and predictive powers (presented as the cost, measured in bits) of the top ten hypotheses resulting from automated 3D-
QSAR pharmacophore generation

Hypothesis Total cost Difference in costa RMSb Correlation Featuresc Max. fit value

Hypo1 108.56 128.44 1.02 0.96 HBA, HBA, HAli, HAro, HAro 10.92

Hypo2 113.84 123.16 1.20 0.93 HBA, HAli, HAro, HAro , NI 9.75

Hypo3 114.36 122.64 1.22 0.93 HBA , HAli, HAro, HAro, NI 9.75

Hypo4 118.03 118.97 1.33 0.92 HBA, HAli, HAro, HAro, NI 9.46

Hypo5 119.50 117.50 1.34 0.92 HBA, HAli, HAro, NI, RA 7.61

Hypo6 120.77 116.23 1.41 0.91 HBA, HBA, HAli, HAro, HAro 9.44

Hypo7 121.00 116.00 1.41 0.91 HBA, HBA, HAli, HAro, HAro 10.15

Hypo8 121.39 115.61 1.41 0.91 HBA, HAli, HAro, HAro, NI 8.29

Hypo9 121.56 115.44 1.42 0.91 HBA, HAli, HAro, HAro, NI 8.70

Hypo10 121.72 115.28 1.30 0.91 HBA, HAli, HAro, NI, RA 7.31

a Cost difference between the null and the total cost. The null cost, the fixed cost, and the configuration cost were 237.009, 94.8158, and 14.862,
respectively
bRMS root mean square deviation: the deviation of the log(estimated activity) from the log(measured activity) normalized to log(uncertainty)
cHBA hydrogen-bond acceptor; HAli hydrophobic aliphatic; HAro hydrophobic aromatic, NI negative ionization, RA ring aromatic

Fig. 2 Chemical features of the
best pharmacophore (Hypo1),
with its 3D spatial constraints.
Green shows a hydrogen-bond
acceptor (HBA), blue shows a
hydrophobic aliphatic (HAli)
feature, and dark blue represents
a hydrophobic aromatic (HAro)
feature
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and low activity, IC50≤3000 nM=+. The activity of each
compound was estimated using regression analysis. One active
and two moderately active compounds were underestimated as
moderately active and low activity compounds, respectively.
Three inactive compounds were overestimated as being
moderately active, and the remaining compounds were
classified correctly (Fig. 3). Based on the results of the above
analysis, we can conclude that the activities of the com-
pounds estimated by Hypo1 were close to the corresponding
experimental IC50 values, and the error values defined as the
ratio between the experimental and estimated activity values
which demonstrated remarkable consistency between the
estimated and experimental IC50 values. The experimental
and predicted activities of Hypo1 for the training set
compounds are shown in Table 2.

Validation of Hypo1

Fisher’s randomization method, a test set, the goodness of
fit, and the enrichment factor were used to validate and
confirm the robustness of Hypo1.

Fisher’s randomization method

Fisher’s test was used to evaluate the statistical relevance of
the best hypothesis by assigning a particular confidence
level. Here we set a confidence level of 95%, so 19 random
spreadsheets were created by shuffling the experimental
activity values of the training set compounds, and a
hypothesis was generated for each spreadsheet. The
significance of the hypothesis was calculated using the
following formula: S ¼ 1�� 1þ Xð Þ=Y½ � � 100; where X
is the total number of hypotheses with total costs that are
lower than the original hypothesis, and Y is the total number
of HypoGen runs (initial+random runs). Here, X =0 and Y=

(1+19), hence 95% ¼ 1� 1þ 0ð Þ= 19þ 1ð Þð Þ½ Þ� � 100:
Two spreadsheets failed to produce the pharmacophore.
The total costs of the other 17 pharmacophore models were
compared with that of Hypo1, and it was found that the
original hypothesis was far superior to the 17 random
hypotheses, indicating a 95% confidence level for the
Hypo1 model. Figure 4 clearly shows that the Hypo1 model
was not generated by chance.

Test set

A good pharmacophore should have the ability to predict
the activities of external compounds (i.e., compounds
other than those in the training set). A test set consisting
of 25 compounds was prepared using the same protocol
as the training set, and the molecules were classified
based on their activity values: highly active, IC50<300
nM=+++; moderately active, 300≥IC50<3000 nM=++;
low activity, IC50≤3000 nM=+. Two active molecules
were underestimated as being moderately active, and one
moderately active molecule was overestimated as an active
compound. The remaining compounds were classified cor-
rectly, indicating that Hypo1 was able to provide accurate
estimates for the activities of compounds. The experimental
and Hypo1-predicted activities of the compounds in the test
set are shown in Table 3. The test set exhibits a correlation
coefficient of 0.91 between the predicted and experimental
values (Fig. 5). This result shows that Hypo1 can be used to
gauge the activities of compounds beyond those in the
training set, and it can be used in a predictive capacity.

Decoy set

Another two parameters that can be used to validate the
hypothesis are the goodness of fit and the enrichment

Fig. 3 a–b Mapping the best
model pharmacophore for ALR2
antagonists (Hypo1) onto the
training set compounds. a
Hypo1 mapped onto the most
active molecule (compound 1,
IC50: 1 nM). b Hypo1 mapped
onto the least active molecule
(compound 26, IC50: 10000
nM). Features are color-coded:
green hydrogen-bond acceptor
(HBA), light blue hydrophobic
aliphatic (HAli) feature, dark
blue hydrophobic aromatic
(HAro) feature
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Table 2 Actual and estimated activities of the training set molecules, obtained using the pharmacophore model Hypo1

Compound no. Fit valuea Exp. IC50 (nM) Predicted IC50 (nM) Errorb Experimental scalec Predicted scalec

1 9.15 1 0.99 −1.0 +++ +++

2 8.37 3.1 6.00 1.9 +++ +++

3 8.61 4 3.40 −1.2 +++ +++

4 8.32 5 6.80 1.4 +++ +++

5 8.23 5.9 8.30 1.4 +++ +++

6 8.30 7.1 7.00 −1.0 +++ +++

7 8.00 10 14.00 1.4 +++ +++

8 7.84 12 20.00 1.7 +++ +++

9 7.66 13 31.00 2.4 +++ +++

10 7.93 19 17.00 −1.1 +++ +++

11 7.63 25 33.00 1.3 +++ +++

12 8.41 26 5.50 −4.7 +++ +++

13 7.76 33 24.00 −1.3 +++ +++

14 7.48 42 47.00 1.1 +++ +++

15 7.72 46 27.00 −1.7 +++ +++

16 6.47 140 480.00 3.4 +++ ++

17 6.39 400 580.00 1.4 ++ ++

18 6.14 650 1000.00 1.6 ++ ++

19 6.22 720 840.00 1.2 ++ ++

20 6.08 890 1200.00 1.3 ++ ++

21 5.32 1900 6800.00 3.5 ++ +

22 5.61 2700 3500.00 1.3 ++ +

23 5.36 4500 6100.00 1.4 + +

24 6.00 6400 1400.00 −4.5 + ++

25 5.88 8200 1900.00 −4.4 + ++

26 6.01 10000 1400.00 −7.3 + ++

a Fit value indicates how well the features in the pharmacophore overlap with the chemical features in the molecule. Fit=weight × [max (0, 1 –SSE)],
where SSE=(D/T)2 , D=displacement of the feature from the center of the location constraints, and T=the radius of the location constraint sphere for
the feature (i.e., the tolerance)
b Difference between the predicted and experimental values. “+” indicates that the predicted IC50 is higher than the experimental IC50; “-”
indicates that the predicted IC50 is lower than the experimental IC50; a value of 1 indicates that the predicted IC50 is equal to the experimental IC50

c Activity scale : IC50<300 nM=+++ (highly active); 300 nM≥IC50<3000 nM=++ (moderately active); IC50 ≥ 3000 nM=+ (low activity)

Fig. 4 Comparing the total cost
of Hypo1 with the total costs
of the 17 random hypotheses
generated in the Fisher
randomization run
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factor. A decoy set containing 10 active and 2190 ALR2-
inactive compounds was used to calculate these properties.
Screening was performed using the Ligand Pharmacophore

Mapping module in DS, and the values were calculated
using the formula

EF ¼ H a � Dð Þ= H t � Að Þ½ � ð3Þ

GF ¼ H a=4H tAð Þ 3Aþ H tð Þ � 1� H t � H að Þ= D� Að Þð Þð �:½
ð4Þ

The number of hits (Ht) in the “hit list” was 14, the
percentage yield of actives (Y) was 64.28%, the proportion
of actives in the hit list (A) was 90%, and there was one
false negative and five false positives. The best hypothesis
should select the active compounds during the screening
process, and a high percentage of the compounds that it
picks should be active compounds; it should also be
efficient at reducing true negatives and false positives.
The EF (141.42) and GF (0.70) values are very good,
indicating that Hypo1 screening is highly efficient (Table 4).

Database screening

Virtual screening of databases is an effective alternative to
high-throughput screening methodologies, as well as a

Fig. 5 Graph showing the correlation (r) between the experimental and
Hypo1-predicted ALR2-inhibitory activities of 25 test set molecules
along with 26 training set molecules

Table 3 Experimental and
Hypo1-predicted IC50 values of
the 25 test set molecules

aDifference between the pre-
dicted and experimental values.
“+” indicates that the predicted
IC50 is higher than the experi-
mental IC50; “-” indicates that
the predicted IC50 is lower than
the experimental IC50; a value of
1 indicates that the predicted
IC50 is equal to the experimental
IC50

bActivity scale: IC50<300
nM=+++ (highly active); 300
nM≥IC50<3000 nM=++
(moderately active); IC50 ≥ 3000
nM=+ (low activity)

Compound no. Exp. IC50 (nM) Pred. IC50 (nM) Errora Exp. scaleb Pred. scaleb

1 3.1 3.99 1.29 +++ +++

2 3.5 3.02 −0.86 +++ +++

3 6.2 7.29 1.18 +++ +++

4 15 5.37 −0.36 +++ +++

5 20 20.35 1.02 +++ +++

6 76 78.25 1.03 +++ +++

7 94 66.85 −0.71 +++ +++

8 100 735.27 7.35 +++ ++

9 100 97.03 −0.97 +++ +++

10 150 152.95 1.02 +++ +++

11 170 162.50 −0.96 +++ +++

12 230 291.24 1.27 +++ +++

13 250 1629.34 6.52 +++ ++

14 320 560.15 1.75 ++ ++

15 320 505.12 1.58 ++ ++

16 420 410.52 −0.98 ++ ++

17 660 859.31 1.30 ++ ++

18 700 532.02 −0.76 ++ ++

19 1,000 2364.14 2.36 ++ ++

20 1,400 80.12 −0.06 ++ +++

21 1,800 1803.96 1.00 ++ ++

22 2,300 2237.28 −0.97 ++ ++

23 3,200 3034.31 −0.95 + +

24 4,200 3996.00 −0.95 + +

25 4,300 3424.47 −0.80 + +
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sophisticated approach to the drug discovery process. Phar-
macophore modeling, virtual screening, and molecular dock-

ing have become important tools in computer-aided drug
design. We therefore used Hypo1 as a 3D structural query to
screen the NCI database for potential inhibitors of ALR2. The
NCI database consists of ~0.2 million compounds; among
these, 2017 compounds had all of the chemical features
present in Hypo1. These molecules were then further
filtered down to 69 compounds by specifying that the
maximum fit value must be above 10. However, even if a
molecule has all of these required chemical features, it may
not be active towards ALR2, so we tested the selected
molecules for potential as a lead compound, based on their
ADME properties and using Lipinski’s rule of five. ADME
and Lipinski's rule of five are the important criteria’s to sort
the small molecules based on drug-like properties. There-
fore, we further sorted these molecules using ADME and
the rule of five. Only three molecules (Fig. 6) passed the
ADME and rule of five criteria, and these molecules were
then subjected into a molecular docking program to study
their critical interactions with the vital amino acids present
in the active site of ALR2.

Fig. 6 a–d The pharmacophore
model of ALR2 inhibitors
Hypo1 was mapped onto com-
pounds from the NCI database.
a All three hit molecules
(NCI0095667, NCI0036494,
and NCI0019597) aligned with
Hypo1. b NCI0095667 aligned
with Hypo1. c NCI0036494
aligned with Hypo1. d
NCI0019597 aligned with
Hypo1. Features are color
coded: green hydrogen-bond
acceptor (HBA), light blue
hydrophobic aliphatic (HAli),
dark blue hydrophobic aromatic
(HAro)

Table 4 Statistical data associated with the screening of the molecules
in the decoy set using Hypo1

Parameter Value

Total number of molecules in the database (D) 2200

Total number of actives in database (A) 10

Total number of hit molecules from the database (Ht) 14

Total number of active molecules in the hit list (Ha) 9

% Yield of actives Ha=Htð Þ � 100½ � 64.29

% Ratio of actives Ha=HAð Þ � 100½ � 90.00

Enrichment factor (EF) 14.1

False negatives [A − Ha] 1

False positives [Ht – Ha] 5

Goodness of fit scorea (GF) 0.70

a H a=4H tAð Þ 3Aþ H tð Þ½ Þ» 1� H t � H að Þ= D� Að Þð Þð �; GH score
above 0.6 indicates a very good model
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Molecular docking studies on ALR2

LigandFit in DS [41] was used to perform molecular docking
in order to find the accurate orientations of the ligands at the
active site of the protein. The candidate molecules from the
NCI were docked into the active site of ALR2 in order to
determine their optimal orientations and binding abilities.
Initially the docking parameters were validated by docking
the co-crystal molecule into the active site of ALR2. This
validation process was performed to check whether the
selected parameters were able to produce a suitable binding
orientation of the ALR2 antagonist at the active site or not.
Thus, the 3D structure of ALR2 combined with 3-[5-(3-
nitrophenyl)thiophen-2-yl] propanoic acid (53N) was taken
from the PDB (PDB ID: 3DN5), and 53N was sketched and
docked into the active site of ALR2. The binding site
contained two main subpockets: the catalytic anion binding
site and the hydrophobic-specific pocket. The catalytic
subpocket was deeply buried and consisted of residues that
are presumably involved in the catalytic mechanism (Try48,
Lys77, and His110). Additionally, the nicotinamide moiety
of NADP+ and Trp111 interact with the most of the ligands.
Hydrophobic contacts can form with the side chains of
Trp20, Val47, Trp79, and Trp219. 53N showed hydrogen
bonds between its polar head group and the residues of the
catalytic pocket (Tyr 48, His110, and Trp111), as well as
short van der Waals interactions between the side chains of
Trp111 and Leu300. An RMSD value of 0.598 Å (Fig. 7)
between the best docked pose and the co-crystal of the ligand
was obtained, revealing that the selected parameters are good
for determining the orientation of ALR2 in the active site.
Therefore, the same parameters were employed to dock the
candidate compounds. All three molecules showed very strong
interactions with critical residues like Leu300, Trp111, His110,
and Tyr48. Among the three hit molecules, one (NCI0036494)
showed a hydrogen bond as well as hydrophobic interactions
with the active site residues, just as seen in the X-ray structure
(Fig. 8). This compound was therefore selected for use in MD
simulations aimed at probing the potential binding affinity
and the adaptability of ALR2 towards the ligands.

Molecular dynamics simulation

Based on the docking results, MD simulation was carried out
for the ALR2–NCI0036494 complex and the complex
structure from the PDB (PDB ID: 3DN5) using GROMACS.
The behavior of the predicted complex was studied in a
dynamic context, considering the flexibility of the protein.
Superposing the coordinates of each complex structure
allowed us to monitor how the RMS evolved. The drift in the
root mean square deviation (RMSD) of the Cα atom of each
protein was determined for both systems. The fluctuations
tended to converge to around 1.5–2.5Å after 2 ns of simulation
(Fig. 9), which indicates that the whole system is stable and
well equilibrated. The plot of the root mean square fluctuation
(RMSF) shows that the residues present in the loop regions
exhibit a great deal of movement, and the N- and C-terminal
regions are also prone to significant fluctuations (Fig. 9). The
potential energy plot showed a substantial decline in energy
from the initial energy. A representative structure with an
RMSD that was closest to the average structure from the last 2 ns
of the MD simulations was chosen for use in the comparative
analyses.

Upon analyzing the simulated complexes for multiple
hydrogen-bond interactions, NCI0036494 and 53N were
found to show similar interactions with the critical residues
His110, Trp111, Tyr48, and Leu300, and these interactions
were maintained throughout the simulation process. Multiple
strong hydrogen-bond interactions were observed throughout

Fig. 8 a–b Stereo view of the binding modes of the compounds at the
ALR2 active site, as suggested by molecular docking. a NCI0036494;
b 53N. Black lines show hydrogen bonds

Fig. 7 Superposition of the co-crystal (53N) on its docked pose
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the simulation between the critical residues His110, Trp111,
Tyr48, and Leu300 and the ligands (NCI0036494 and 53N).
The distances between the lead molecule and the critical
residues were similar to those between 53N and the residues,
and the lead molecule also presented a similar orientation to
53N at the active site of ALR2. However, the residues His111
and Try 48 got closer to NCI0036494 than to 53N. His110 and
Tyr48 function as H-bond acceptors by forming H-bonds with
O25 and O1 of NCI0036494. The nitrobenzene group in the
lead molecule exhibited a strong π–π interaction with Trp111,
and a similar interaction was noted between the methoxy
group of 53N and Trp111. Similar data were derived from the
pharmacophore hypothesis and the docking studies, so this
molecule could be a more potent antagonist of ALR2 than
53N (Fig. 10). Thus, when designing potent ALR2 inhibitors,
it is important to ensure that the chemical features of Hypo1
are present in the structure of the potential inhibitor, as we
have shown that hydrogen bonding plays an important role
in the ligand–receptor interactions.

Similarity search and molecular docking studies

The NCI database compound NCI0036494 was selected as a
potent ALR2-inhibiting compound based on various drug-like
validations. We then performed a similarity search using this
compound as the reference in the PubChem database. In the
similarity search, a total of 41 molecules showed greater than
90% similarity to NCI0036494. These 41 compounds were
tested for oral bioavailability by applying Lipinski’s rule of
five, and 38 compounds of those passed this test, indicating

that these compounds are had good oral bioavailabilities.
Next, these 38 molecules were minimized by applying the
CHARMm force field [25–27], and the BEST conformational
analysis was applied to generate a maximum number of 255
conformers using a Monte Carlo-like algorithm with an
energy range of 20 kcal mol−1. The generated conformers
were screened using Hypo1 to check whether they satisfied
the geometric constraints of the best hypothesis. In total,
eight “hit” compounds (Fig. 11) from the PubChem database
contained all of the critical chemical features present in
Hypo1, and these molecules were subsequently subjected to
molecular docking studies to determine whether these
compounds adopted the appropriate orientation when bound
at the active site of ALR2.

NCI0036494 and the eight hit compounds from the
PubChem database showed better dock scores than the co-
crystal (Table 5). The anion-binding site (a hydrophobic
pocket) contained Trp111, His110, Tyr48, and the nicotin-
amide moiety of the bound cofactor NADPH/NADP+. A
hydrophobic-specific pocket also opened up next to the
residues Thr113 and Leu300. Trp111 bordered the anion-
binding pocket and exposed its π-face to the hydrophobic-
specific pocket. The hit molecules showed a π–π interaction
with Trp111, which was present at the anion-binding site
(hydrophobic pocket), and the nicotinamide moiety of the
bound cofactor NADPH/NADP+. In addition, all of the hit
molecules presented strong hydrogen-bond interactions with
Trp111, His110, and Tyr48.

All of the critical interactions of the hit molecules with
the active site of ALR2, and therefore the activities of the

Fig. 9 RMS deviation profiles
of the Cα atoms for the
complexes of NCI0036494 and
53N with ALR2, and the local
conformational changes as
indicated by the RMSFs of the
backbone atoms as a function of
residue number
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hit molecules towards ALR2, were confirmed by calculat-
ing various scoring functions such as the dock score, the
Jain score, the potential of mean force (PMF), and the
piecewise linear potential (PLP), and comparing the scores
with those of 53N. All of the hit compounds presented
higher scores than 53N. Among these nine molecules (one
from NCI and eight from PubChem), five (411929,
110778826, 411600, 411165, and NCI36494) gave higher
dock scores than 53N. The remaining four molecules
(4386961, 39453612, 39453613, and 5135707) gave similar
dock scores to 53N. The PLP scores were calculated based on

the formation of hydrogen bonds between the protein and
ligand. Compounds 411929, 411600, 411165, and 5135707
gave higher PLP scores than 53N, indicating that they bind
strongly with ALR2. The PMF scores were obtained based on
a statistical analysis of the three-dimensional structures of the
protein–ligand complexes, and they correlate with the
protein–ligand binding free energies. All of the hit compounds
showed PMF values that were higher than that of 53N (157.4),
indicating that our hit compounds had stronger receptor–
ligand affinities (Table 6). The Jain score was predicted
according to the sum of interactions such as the lipophilic

Fig. 10 The distances between each inhibitor and the Tyr48, His110, Trp111, and Leu300 groups in ALR2, plotted as a function of time

Fig. 11 The two-dimensional
structures of the hit
compounds
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interaction, the solvation of the protein and ligand, polar
attractive interactions, polar repulsive interactions, as well as
an entropy term for the ligand. The hydrophobic interactions,
the entropy, and the energy changes were represented by the
Jain and Ludi scores. The NCI compound gave a good dock
score but a lower PLP score than 53N. All of these scores
indicated that the compounds 411929, 4116000, 411165, and
5135707 present greater binding stabilities than 53N. Thus,
we can conclude that these four lead compounds are good
candidates for potent inhibitors of ALR2.

Conclusions

The purpose of this study was not only to construct a
pharmacophore model that will predict the activities of the
proposed ALR2-inhibitory compounds, but also to apply
the best hypothesis in the virtual screening of a database to
find novel scaffolds. Pharmacophore and molecular dock-
ing methods were applied to determine the structural
features of inhibitors that are needed for them to bind to
ALR2. MD simulation was also used to gain deep insight
into the structural properties of the model and the binding

details of the ALR2 complex. Various quantitative hypotheses
were generated based on 26 knownALR2 antagonists, and the
best ten hypotheses were retained for further evaluation.
Ultimately, Hypo1 was selected as the best of these
hypotheses based on Debnath analysis, Fisher’s randomiza-
tion, the use of a test set, and also by calculating GF and EF
values. Hypo1 had the highest cost difference (128.44), the
lowest RMSD (1.02), a good correlation coefficient (0.96),
and a low total cost value (108.56) in comparison to the other
hypotheses. Hypo1 produced good results during the valida-
tion process, so it was selected as a 3D structural query to
screen the NCI database, and the hit molecules thus obtained
were then filtered by applying a cutoff maximum fit value,
studying their ADME properties, and using Lipinski’s rule of
five. Three of the hit molecules satisfied all of these
conditions, and these were used in molecular docking studies
to evaluate their optimal orientations and their interactions
with the critical residues of ALR2. The three molecules
showed strong hydrogen-bond interactions as well as hydro-
phobic contacts with critical residues such as His110, Trp111,
Tyr48, and Leu300. The molecules NCI0036494 and 53N
were then used in MD simulations to find the behavior of
these molecules during 5 ns production runs. The hit molecule

Table 5 Critical chemical
interactions at the active site of
ALR2

Name π–π interaction Hydrogen-bond Interaction

Trp111 Trp111 His110 Leu300 Tyr48

411929 Face to face √ √ √ √
11078826 Face to face √ √ √ √
411600 Face to face √ × √ √
411165 Face to face √ × √ √
4386961 Face to face √ √ √ √
39453612 Face to face √ √ √ √
6739453613 Face to face √ √ √ √
39453613 Face to face √ √ √ √
5135707 Face to face √ √ √ √

Table 6 Comparison of the hit molecules with 53N using various scoring functions

Hit molecule Ligscore1 Ligscore2 PLP1 PLP2 PMF PMF04 Dock score Ludi1 Ludi2 Ludi3 Jain

411929 1.5 2.43 97.86 106.85 201.39 128.14 108.543 383 374 1,182 5.94

11078826 3.38 5.24 95.66 97.22 180.12 121.2 107.47 425 377 717 6.13

411600 3.92 5.65 105.92 108.94 170.51 113.3 110.918 527 490 949 4.11

411165 2.28 4.57 103.64 104.01 192.13 135.23 108.21 576 507 1,035 4.63

4386961 2.64 4.29 90.96 97.36 167.76 106.44 98.429 427 413 754 4.92

39453612 2.85 4.91 94.22 91.39 185.63 112.4 98.775 469 400 868 5.65

39453613 1.58 3.86 96.47 98.37 179.49 113.22 100.459 479 446 1,149 7.49

5135707 2.69 4.7 100.6 103.79 180.16 111.59 95.114 442 427 882 6.3

NCI0036494 2.26 4.4 94.49 100.09 158.66 117.67 103.878 395 393 745 6.74

53N 5.66 6.17 102.81 104.66 157.4 128.4 104.832 509 463 941 5.84
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NCI0036494 showed very similar interactions to 53N, as
confirmed by analyzing the simulation trajectories (RMSD,
RMSF, and the distance plots). NCI0036494 was then used as
a query to search for similar compounds in the PubChem
database. The 41 compounds found presented similarities to
NCI0036494 of greater than 90%. After further analysis, eight
of these compounds underwent docking studies, to check
whether they complied with the geometric constraints of
Hypo1. All of these molecules presented high values of
properties such as the dock score, PMF, PLP, etc. Following a
further round of analysis, wewere able to conclude that four of
these lead molecules are good candidate ALR2 inhibitors, and
that Hypo1 is a good tool to select the novel candidate ALR2-
inhibiting ligands from databases.
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